User Tools

Site Tools


ice:servo-opls

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
ice:servo-opls [2014/06/30 21:57] – [I/O (OEM Only)] jtshugrueice:servo-opls [2021/05/20 22:42] – external edit 127.0.0.1
Line 8: Line 8:
  
 Please read [[:limited_warranty|Limited Warranty]] and [[:warnings_cautions|General Warnings and Cautions]] prior to operating the ICE-CP1. Please read [[:limited_warranty|Limited Warranty]] and [[:warnings_cautions|General Warnings and Cautions]] prior to operating the ICE-CP1.
 +
 +The guide to programming the ICE-CP1 through serial commands can be [[ice:commands:opls|found here]].  The ICE-CP1 web page can be [[https://vescent.com/us/d2-135-offset-phase-lock-servo.html|found here]].
  
 ===== Description ===== ===== Description =====
Line 16: Line 18:
 ===== Absolute Maximum Ratings ===== ===== Absolute Maximum Ratings =====
 Note: All modules designed to be operated in laboratory environment Note: All modules designed to be operated in laboratory environment
-<WRAP center round box 60%>+
 ^  Parameter  ^  Rating  ^ ^  Parameter  ^  Rating  ^
 |Environmental Temperature | >15°C and <30°C| |Environmental Temperature | >15°C and <30°C|
 |Environmental Humidity | <60% |  |Environmental Humidity | <60% | 
 |Environmental Dew Points | <15°C | |Environmental Dew Points | <15°C |
-</WRAP>+
  
  ===== Specifications  =====  ===== Specifications  =====
-<WRAP center round box 650px> +                                                                                                                                                            ^  ICE-CP1-200                                                                                     ^  ICE-CP1-500  ^  Units   
-^ ^  ICE-CP1-200  ^  ICE-CP1-500  ^  Units  +^ Current Source                                                                                                                                                                                                                                                                      
-^ Current Source ^ ^ ^ ^ +| Current range                                                                                                                                               |  0-200                                                                                           |  0-500        |  mA      
-|<html> &nbsp;&nbsp; </html>Current range|  0-200  |  0-500  |  mA  +| Current setpoint resolution                                                                                                                                 |  200                                                                                             |  500          |  μA      
-|<html> &nbsp;&nbsp; </html>Current setpoint resolution |  200  |  500  |  μA  +| Current noise density                               |  <100                                                                                            |  <200         | pA /√Hz  
-|<html> &nbsp;&nbsp; </html>Current noise density((All measurements guaranteed on design and verified experimentally on D2-105 which uses same circuit.))|  <100  |  <200  | pA / <HTML> <span style="text-decoration: overline;">Hz</span> </HTML> +| RMS Noise (10Hz - 100kHz)              |  <50                                                                                             |  <100         |  nA      
-|<html> &nbsp;&nbsp; </html>RMS Noise (10Hz - 100kHz)((All measurements guaranteed on design and verified experimentally on D2-105 which uses same circuit.))|  <50  |  <100  |  nA  +| RMS Noise (10Hz - 1MHz)                  |  <100                                                                                            |  <150         |  nA      
-|<html> &nbsp;&nbsp; </html>RMS Noise (10Hz - 1MHz)((All measurements guaranteed on design and verified experimentally on D2-105 which uses same circuit.))|  <100  |  <150  |  nA  +| RMS Noise (10Hz - 10MHz)                |  <300                                                                                            |  <500         |  nA      
-|<html> &nbsp;&nbsp; </html>RMS Noise (10Hz - 10MHz)((All measurements guaranteed on design and verified experimentally on D2-105 which uses same circuit.))|  <300  |  <500  |  nA  +| Absolute accuracy                                                                                                                                           |  2                                                                                                              ||  %       
-|<html> &nbsp;&nbsp; </html>Absolute accuracy|  ||  %  +^ Offset Phase Lock Servo Input Signal                                                                                                                                                                                                                                        |         
-^ Offset Phase Lock Servo Input Signal^ ^^  +| Min Offset Frequency                                                                                                                                        |  250                                                                                                            ||  MHz     
-|<html> &nbsp;&nbsp; </html>Min Offset Frequency |  250  ||  MHz  +| Max Offset Frequency                                                                                                                                        |  Min: 9.5, Typical: 10(( Maximum Offset Frequency depends on power of input beat-note signal.))                 ||  GHz     
-|<html> &nbsp;&nbsp; </html>Max Offset Frequency |  Min: 9, Typical: 10(( Maximum Offset Frequency depends on power of input beat-note signal.))  ||  GHz  +| Max Electronic Beat-Note Input \\ (ICE-CP1-SMA)                                                                                                             |  10                                                                                                             ||  dBm     
-|<html> &nbsp;&nbsp; </html> Max Electronic Beat-Note Input \\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-SMA)|  10  ||  dBm  +| Min Electronic Beat-Note Input \\ (ICE-CP1-SMA)                                                                                                             |  -10                                                                                                            ||  dBm     
-|<html> &nbsp;&nbsp; </html> Min Electronic Beat-Note Input \\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-SMA)|  -10  ||  dBm  +| Min Electronic Beat-Note S/N \\ (ICE-CP1-SMA)                                                                                                               |  >50                                                                                                            ||  dB      
-|<html> &nbsp;&nbsp; </html> Min Electronic Beat-Note S/N \\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-SMA)|  >50  ||  dB  +| Max Optical Beat-Note Input \\ (ICE-CP1-FC)                                                                                                                 |  1                                                                                                              ||  mW      
-|<html> &nbsp;&nbsp; </html> Max Optical Beat-Note Input \\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-FC)|  ||  mW  +| Min Optical Beat-Note Input \\ (ICE-CP1-FC)((Approximate value as exact value depends on wavelength of the light and spatial overlap between the lasers.))  |  50                                                                                                             ||  μW      
-|<html> &nbsp;&nbsp; </html> Min Optical Beat-Note Input \\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-FC)((Approximate value as exact value depends on wavelength of the light and spatial overlap between the lasers.))|  50  ||  μW  +| Front-panel Input Connection\\ (ICE-CP1-FC)((ICE-CP1-FC is shipped with an FC to SC multimode patch cord))                                                  |  SC                                                                                                             ||          
-|<html> &nbsp;&nbsp; </html> Front-panel Input Connection\\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-FC)((ICE-CP1-FC is shipped with an FC to SC multimode patch cord))|  SC  ||    |  +| Front-panel Input Connection\\ (ICE-CP1-SMA)                                                                                                                |  SMA                                                                                                            ||          
-|<html> &nbsp;&nbsp; </html> Front-panel Input Connection\\ <html> &nbsp;&nbsp; </html><html> &nbsp;&nbsp; </html>(ICE-CP1-SMA)|  SMA  ||    |  +^ Offset Phase Lock Servo Performance                                                                                                                                                                                                                                         |         
-^ Offset Phase Lock Servo Performance^ ^^  +| Bandwidth((May be limited by the bandwidth of the laser being servoed))                                                                                     |  1.5                                                                                                            ||  MHz     
-|<html> &nbsp;&nbsp; </html>Bandwidth((May be limited by the bandwidth of the laser being servoed))|  TBD   ||  MHz  +| Interval reference frequency drift                                                                                                                          |  +/-20                                                                                                          ||  ppm     
-|<html> &nbsp;&nbsp; </html> Interval reference frequency drift |  +/-20  ||  ppm  +| PFD Noise(( See [[#calculating_phase_noise|Calculating Phase Noise section]] for a full description))                                                       |  -213                                                                                                           ||  dBc/Hz 
-|<html> &nbsp;&nbsp; </html> PFD Noise(( See [[#calculating_phase_noise|Calculating Phase Noise section]] for a full description))|  -213  ||  dBc/Hz +^ Loop Filter Parameters                                                                                                                                                                                                                                                      |         
-^ Loop Filter Parameters ^ ^+| Proportional Gain                                                                                                                                           |  -72 -- 0                                                                                                       ||  dB      
-|<html> &nbsp;&nbsp; </html>Proportional Gain  |  -72 -- 0  ||  dB  +| Proportional Gain Resolution                                                                                                                                |  2                                                                                                              ||  dB      
-|<html> &nbsp;&nbsp; </html>Proportional Gain Resolution |  2  ||  dB  +| Integrator                                                                                                                                                  |  3, 10, 30, 100, 300                                                                                            ||  kHz     
-|<html> &nbsp;&nbsp; </html>Integrator|  3, 10, 30, 100, 300  ||  kHz  +| Differential                                                                                                                                                |  Off, 10, 30, 100, 300                                                                                          ||  kHz     
-|<html> &nbsp;&nbsp; </html>Differential |  Off, 10, 30, 100, 300  ||  kHz  +| Differential Gain                                                                                                                                           |  18                                                                                                             ||  dB      
-|<html> &nbsp;&nbsp; </html>Differential Gain |  18  ||  dB  +
-</WRAP> +
-<WRAP center round box 60%>+
 ^Electrical Specifications^^^^^ ^Electrical Specifications^^^^^
 ^ ^  Min  ^  Typical  ^  Max  ^  Units  ^ ^ ^  Min  ^  Typical  ^  Max  ^  Units  ^
Line 63: Line 63:
 |+15V Current Draw (ICE-CP1-500)((Current draw depends on output current to laser diode.)) |  80  | |  580  |  mA  | |+15V Current Draw (ICE-CP1-500)((Current draw depends on output current to laser diode.)) |  80  | |  580  |  mA  |
 |-15V Current Draw | |  40  | |  mA  | |-15V Current Draw | |  40  | |  mA  |
-</WRAP>+
  
 ===== Setting the Offset Frequency ===== ===== Setting the Offset Frequency =====
  
 Two numbers control the offset frequency of the ICE-CP1: The divider setting N and the reference frequency. The divider setting N can be set to N=8,16,32 or 64. The reference frequency can be generated internally with a range from 50 - 240 MHz. Or an external frequency reference can be provided (external frequency must be from 32 MHz - 240 MHz). The offset frequency of the laser is given by the following formula: Two numbers control the offset frequency of the ICE-CP1: The divider setting N and the reference frequency. The divider setting N can be set to N=8,16,32 or 64. The reference frequency can be generated internally with a range from 50 - 240 MHz. Or an external frequency reference can be provided (external frequency must be from 32 MHz - 240 MHz). The offset frequency of the laser is given by the following formula:
-<WRAP center round box 450px><html><center></html> ** Offset = N * Reference Frequency **<html></center></html></WRAP>+<WRAP center round box 260px> **Offset = N * Reference Frequency** </WRAP>
  
 The table below shows the offset range for different values of N and using the internal or external frequency reference. The table below shows the offset range for different values of N and using the internal or external frequency reference.
Line 87: Line 87:
 =====Understanding the Transfer Function===== =====Understanding the Transfer Function=====
  
-<imgcaption xfer_func center|Schematic of the OPLS right-side panel,showing the configurable transfer function and its user-controls.>{{ :ice:opls-loopfilter-xfer-function.jpg?nolink&700 |}}</imgcaption>+<imgcaption xferfunc|Schematic of the OPLS right-side panel, showing the configurable transfer function and its user-controls.>{{ :ice:opls-loopfilter-xfer-function.jpg?nolink&700 |}}</imgcaption>
  
  
-The charge pump in the OPLS outputs a signal proportional to the phase-error and the transfer function is as shown in <imgref xfer_func >.  However, the OPLS will typically be used to control a //frequency//-tunable device (such as a laser). In this configuration, the effective loop filter is not the one shown in <imgref opls_side_panel>, but includes a extra integration corresponding to converting the phase-error input to a frequency error. Thus, ω<sub> </sub>sets the frequency transition from single-integration to double-integration and ω<sub>I </sub> from single-integration to proportional feedback. It is important to understand this 'hidden' integrator when configuring the loop filter parameters. +The charge pump in the OPLS outputs a signal proportional to the phase-error and the transfer function is as shown in <imgref xferfunc>.  However, the OPLS will typically be used to control a //frequency//-tunable device (such as a laser). In this configuration, the effective loop filter is not the one shown in <imgref xferfunc>, but includes a extra integration corresponding to converting the phase-error input to a frequency error. Thus, ω<sub> </sub>sets the frequency transition from single-integration to double-integration and ω<sub>I </sub> from single-integration to proportional feedback. It is important to understand this 'hidden' integrator when configuring the loop filter parameters. 
  
 =====Calculating Phase Noise ===== =====Calculating Phase Noise =====
Line 96: Line 96:
 The phase-noise specified in Section 1.3 is referenced to the phase frequency detector (PFD) at 1 Hz. To convert that to the noise measured on the actual beat-note, it must be rescaled with the following formula: The phase-noise specified in Section 1.3 is referenced to the phase frequency detector (PFD) at 1 Hz. To convert that to the noise measured on the actual beat-note, it must be rescaled with the following formula:
  
-<WRAP center round box 450px><html><center></html> **D2-135 Phase-Noise Floor = -213 + 20Log(N) + 10Log(F<sub>REF</sub>)**<html></center></html></WRAP>+<WRAP center round box 450px> **D2-135 Phase-Noise Floor = -213 + 20Log(N) + 10Log(ƒ<sub>REF</sub>)**</WRAP>
  
-where N is the value of the divider and F<sub>REF</sub> is the reference frequency as measured in Hz. For more details, please see [[http://www.vescent.com/2012/calculating-phase-noise-from-the-d2-135/|http://www.vescent.com/2012/calculating-phase-noise-from-the-d2-135/]] .+where N is the value of the divider and ƒ<sub>REF</sub> is the reference frequency as measured in Hz. For more details, please see this [[http://www.vescent.com/2012/calculating-phase-noise-from-the-d2-135/|application note]].
  
  
Line 107: Line 107:
 </WRAP> </WRAP>
  
-**Beat Note Input **+**Beat Note Monitor ** 
 + 
 +The Front Panel for the ICE-CP1 has four SMA or FC connectors. The second bottom-most connector is an SMA which is the digitized (i.e. square-wave) version of the input beat-note after a divide-by-2. For example, if the input beat note is 6 GHz, the monitor will have a 3 GHz output.  The signal is ~0 dBm in power regardless of the strength of the input beat-note signal.
  
-The Front Panel for the ICE-CP1 has four SMA or FC connectors. The top connector (SMA for ICE-CP1-SMA, FC for ICE-CP1-FC) is the beat note signal input. When FC, this input should be a <1 mW signal containing overlapped light from both lasers. When an SMA, this input should be an electrical signal, typically the output of the D2-160. 
  
 **External Reference Frequency Input ** **External Reference Frequency Input **
Line 115: Line 116:
 The Front Panel for the ICE-CP1 has four SMA or FC connectors. The second top-most connector is an SMA input for the external frequency reference. The input is AC coupled and 50 Ω terminated. Max power is 10 dBm. The Front Panel for the ICE-CP1 has four SMA or FC connectors. The second top-most connector is an SMA input for the external frequency reference. The input is AC coupled and 50 Ω terminated. Max power is 10 dBm.
  
-**Beat Note Monitor ** +**Beat Note Input **
- +
-The Front Panel for the ICE-CP1 has four SMA or FC connectors. The second bottom-most connector is an SMA containing is the digitized (i.e. square-wave) version of the input beat-note after a divide-by-2. For example, if the input beat note is 6 GHz, the monitor will have a 3 GHz output.  The signal is ~0 dBm in power regardless of the strength of the input beat-note signal.+
  
 +The Front Panel for the ICE-CP1 has four SMA or FC connectors. The top connector (SMA for ICE-CP1-SMA, FC for ICE-CP1-FC) is the beat note signal input. When FC, this input should be a <1 mW signal containing overlapped light from both lasers. When an SMA, this input should be an electrical signal, typically the output of the D2-160.
  
 **Laser Current ** **Laser Current **
Line 129: Line 129:
 Only for OEM versions of the ICE-CP1 purchased without the [[ice:enclosure|ICE-Box]]. Only for OEM versions of the ICE-CP1 purchased without the [[ice:enclosure|ICE-Box]].
 </WRAP> </WRAP>
 +
 +<imgcaption pcbDimensions|Connector and component positions on PCB.>{{ :ice:vpn00320_dimensions.jpg |}}</imgcaption>
  
 **Beat Note Input ** **Beat Note Input **
ice/servo-opls.txt · Last modified: 2021/08/26 15:26 by 127.0.0.1