User Tools

Site Tools


slice:dhv

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

slice:dhv [2020/05/20 22:49] – [Specifications] Kurt Vogelslice:dhv [2022/03/15 20:41] (current) – external edit 127.0.0.1
Line 1: Line 1:
 ====== SLICE-DHV Dual-Channel High-Voltage Amplifier ====== ====== SLICE-DHV Dual-Channel High-Voltage Amplifier ======
  
-<WRAP center round box>The SLICE-DHV is a low-noise, high-bandwidth voltage amplifier with DC bias control and sweep capabilities.  It is designed for controlling piezoelectric transducers used for precision positioning, with particular application to laser frequency stabilization.  The high-voltage output can range from 0 to 200 V, has a voltage noise < 450 µV rms, can drive ±200 mA, and has an unloaded small-signal (±10V) bandwidth > 1 MHz. The SLICE-DHV also has a user-settable voltage limit for safe operation at voltages less than 200 V.+<WRAP center round box>The SLICE-DHV is a low-noise, high-bandwidth, high-voltage source with DC bias control and sweep capabilities.  It is designed for controlling piezoelectric transducers used for precision positioning, with particular application to laser frequency stabilization.  The high-voltage output can range from 0 to 200 V, has a voltage noise <500 µV rms, can drive ±200 mA, and has an unloaded small-signal (±10 V) bandwidth >1 MHz. The SLICE-DHV also has a user-settable voltage limit for safe operation at voltages less than 200 V.
  
-The SLICE-DHV features two modulation modesa unity-gain mode and a full-range mode. The unity gain mode has a 1x voltage gain with a limited operating range of ±10V (-10 V to +10 V input) that is centered around a user-settable DC bias voltage. The full range mode has a 20x voltage gain that operates over the entire 200 V range (0 V to 10 V input). The unity gain mode has better noise performance than the full range mode. +The SLICE-DHV features two Gain valuesG=1 and G=20 for the input modulation signal. When G is set to 1, the output range is limited to ±10V from the user-settable DC bias voltage. When the Gain is set to 20, the modulation input signal allows access to the full range of the SLICE-DHV (0-200 V).  When the Gain is set to 1, the SLICE-DHV has better noise performance than when the Gain is set to 20.\\ 
- +The SLICE-DHV is not recommended for applications that require a large-signal bandwidth greater than 20 Hz, defined for modulation amplitudes more than 10 V.
-The SLICE-DHV is not recommended for applications that require a large-signal bandwidth greater than 50 Hz, defined for modulation amplitudes more than 10 V.+
      
 </WRAP> </WRAP>
Line 47: Line 46:
 <imgcaption dhv_prod_shot|The SLICE-DHV>{{ https://www.vescent.com/manuals/lib/exe/fetch.php?media=slice:dhv:slice-dhv-mr-angle.png?200|}}</imgcaption> <imgcaption dhv_prod_shot|The SLICE-DHV>{{ https://www.vescent.com/manuals/lib/exe/fetch.php?media=slice:dhv:slice-dhv-mr-angle.png?200|}}</imgcaption>
 ==== Purchase Includes ==== ==== Purchase Includes ====
-  * SLICE-DHV dual-channel High-Voltage Amplifier+  * SLICE-DHV Dual-channel High Voltage Amplifier
   * AC power cord with appropriate wall plug for you location (if known)   * AC power cord with appropriate wall plug for you location (if known)
   * Final Test Documentation   * Final Test Documentation
Line 92: Line 91:
 | Control Interfaces                                    |  Touch screen, USB 2.0                                                                 | | Control Interfaces                                    |  Touch screen, USB 2.0                                                                 |
 | Output Voltage Range                                  |  0-200 V                                                                               | | Output Voltage Range                                  |  0-200 V                                                                               |
-Modulation Modes                                      |Unity Gain: ±10 V around a user-settable voltage\\ Full Range: 0-200 V  |+Gain Ranges                                      |Unity Gain: ±10 V around a user-settable voltage\\ Full Range: 0-200 V  |
 ^  Modulation Gains                                                                                                                             || ^  Modulation Gains                                                                                                                             ||
-|Unity Gain Mode \\ Full Range Mode                   |  1 V/V \\ 20 V/V                                                                       |+|Unity Gain \\ Full Range                    1 V/V \\ 20 V/V                                                                       |
 ^  Bandwidth                                                                                                                                    || ^  Bandwidth                                                                                                                                    ||
-|Small Signal\\ Large Signal                          |  >1 MHz, unloaded\\ <50 Hz, C<sub>load</sub> <0.5 µF                                           |+|Small Signal\\ Large Signal                          |  >1 MHz, unloaded\\ <20 Hz, C<sub>load</sub> <0.5 µF                                           |
 ^  Performance                                                                                                                                  || ^  Performance                                                                                                                                  ||
 | Output Current                                        |  ±200 mA                                                                                | | Output Current                                        |  ±200 mA                                                                                |
-| Modulation Range                                      |  ±10 V((see note in <tabref no_neg>))                                                  | +| Modulation Input Voltage Range                        |  ±10 V((see note in <tabref no_neg>))                                                  | 
-| Voltage Noise                                          <450 µV rms (10 Hz - 1 MHz)                                                          |+| Voltage Noise                                          <450 µV rms (10 Hz - 100 kHz)                                                          |
 | Accuracy                                              |  <1%                                                                                   | | Accuracy                                              |  <1%                                                                                   |
 | Drift                                                  0.2 mV/°C                                                                             | | Drift                                                  0.2 mV/°C                                                                             |
-| Triggering                                            |  TTL                                                                                   |+| Triggering                                            |  5V TTL                                                                                   |
 </tabcaption></WRAP> </tabcaption></WRAP>
  
 <WRAP center round box 60%><tabcaption no_neg|> <WRAP center round box 60%><tabcaption no_neg|>
-|  {{ :warning-sign.png?300&nolink }}  | For the best results, the user should not attempt to drive the output to a negative value The following equation should not take on a negative value at any time during the experiment:   \\ V<sub>out</sub> = V<sub>bias</sub> + G*V<sub>input</sub> where G is the Gain as [[slice:dhv#setting_the_operation_mode|chosen in the set up steps]].  |+|  {{ :warning-sign.png?300&nolink }}  | Most PZTs should not be driven with negative voltagesand the user should consult the specified safe operating voltage range for their PZT.  Be aware that the high-voltage output can be driven to a minimum of -10 V when applying a modulation.   |
 </tabcaption></WRAP> </tabcaption></WRAP>
  
Line 216: Line 215:
  
 ==== Bar Graph and Output Voltage Indicator ==== ==== Bar Graph and Output Voltage Indicator ====
-The blue bar graph and output voltage indicator (bubbles 11 & 4 in <imgref front>) report the output voltageThese displays are useful for quickly identifying drift in the system or that a servo-controlled loop is approaching a rail.  They are designed to capture drift and do not have sufficient bandwidth to display the instantaneous response of the unit to servoing or ramping+The blue bar graph and output voltage indicator (bubbles 11 & 4 in <imgref front>) report the high voltage output. This display is intended to display the "DC" value of the output with an update rate of about 4 Hz and will not capture faster transient behavior of the output. These displays offer quick visual identification of the output voltage and can help visualize drift in feedback control applications
-==== Setting the Operation Mode ==== +==== Setting the Gain on the Input Signal ==== 
-The SLICE-DHV has two operation modes: high bandwidth/low gain (HBLG) mode and low bandwidth/high gain (LBHG) mode.  In LGHB mode, the control signal experiences a gain of 1 and is summed into the DC bias.  The control signal summing circuit has very high bandwidth((The exact bandwidth depends on the capacitance of the load)), on the order of 200 kHz.  This operation mode is designed for fast servoing around a set point.  Since the range of the modulation/control input signal is ±10 V, this mode allows fast control over the range: V<sub>bias</sub> ± 10 V\\ \\+The Gain on the input control signal can be set to either 1 or 20.  When the gain is 1, the input modulation signal is directly summed with the DC Bias to produce the high voltage output.  This mode is useful for limiting the voltage range of the high voltage output to ±10 V around the DC bias operating voltage. \\
  
-In LBHG mode the the control signal experiences a gain of 20 and so can be used to sweep the entire 0 to 200 V range of the SLICE-DHV with a bandwidth of ≥10 Hz full scale\\ \\+When the Gain is set to 20, the input signal is multiplied by 20 and then summed into the DC bias.  This mode allows the modulation input to drive the high voltage output over the entire 0 to 200 V range of the SLICE-DHV.  In this mode the DC Bias defaults to zero voltage but can be adjusted to add DC Bias to the modulation signal if desired.   Note that the large-signal bandwidth will be limited when the Gain is set to 20 to less than 20 Hz, but that the small-signal bandwidth (±10V) will be identical to that when Gain = 1. \\
  
-To change mode of operation, touch the CH 1 (or CH 2) field at the top of the channel column.  You will be presented with <imgref CH_settings> Touch the Modulation Mode field to drill down to <imgref mod_mode> and select either G=1 V/V; Range = ±10 V (HBLG mode) or G=20 V/V; Range = 0-200 V (LBHG mode).+To change the Gain, touch the CH 1 (or CH 2) field at the top of the channel column.  You will be presented with <imgref CH_settings> Touch the Modulation Mode field to drill down to <imgref mod_mode> and select either G=1 V/V; Range = ±10 V or G=20 V/V; Range = 0-200.
 <imgcaption CH_settings|Setting parameters of individual channel>{{ : slice:dhv:slice-dhv_ch_settings_changed.jpg?430 |}}</imgcaption> <imgcaption CH_settings|Setting parameters of individual channel>{{ : slice:dhv:slice-dhv_ch_settings_changed.jpg?430 |}}</imgcaption>
  
 <imgcaption mod_mode|Select modulation mode>{{ : slice:dhv:slice-dhv_signal_processing_mode_selection.jpg?430 |}}</imgcaption> <imgcaption mod_mode|Select modulation mode>{{ : slice:dhv:slice-dhv_signal_processing_mode_selection.jpg?430 |}}</imgcaption>
  
 +====Choosing Currint Limited or Full Bandwidth====
 +On newer models of the SLICE-DHV, a feature was added which allows the user to switch the Modulation Mode of their unit between Current Limited, and Full Bandwidth. These two modes control the amount of drive current which can be sent through the output op-amp to modulate the load attached to HV out. In Full Bandwidth mode, the current through the op-amp is not limited, giving the SLICE-DHV a larger modulation bandwidth. The drawback, however, is that the output op-amp will occasionally go into thermal shutdown, or show distortions when driven especially hard, or with larger loads. In Current Limited mode, the output op-amp is throttled slightly to prevent the thermal shutdown and distortions seen in Full Bandwidth mode. However, using Current Limited mode slightly reduces the overall bandwidth of the system.
  
 +It is recommended to use the Full Bandwidth modulation mode if in the small signal regime (G=1 output mode, < 20 Vpp modulation), and to switch the SLICE-DHV into its Current Limited modulation mode if larger modulations (G=20 output mode, > 20 Vpp modulation) are required. This will help to prevent thermal shutdown. Certain systems may require different settings than these, though, depending on their specifics. For a more in depth discussion of choosing between Full Bandwidth and Current Limited, see our application note "Load Size Selection and Limiting Factors of the SLICE-DHV’s Modulation Output", which can be found on our website under "Application Notes".
 ==== Setting the Voltage Limit ==== ==== Setting the Voltage Limit ====
 The user can set the maximum voltage output on a given channel so as not to exceed the rated maximum for their device.  From the Home screen, touch the CH 1 (or CH 2) field to see <imgref CH_settings> Touch the Voltage Limit [V] field to set the maximum voltage output. The bar graph output indicator on the Home screen will scale automatically with the maximum voltage set point. \\  The user can set the maximum voltage output on a given channel so as not to exceed the rated maximum for their device.  From the Home screen, touch the CH 1 (or CH 2) field to see <imgref CH_settings> Touch the Voltage Limit [V] field to set the maximum voltage output. The bar graph output indicator on the Home screen will scale automatically with the maximum voltage set point. \\ 
  
 +|  <WRAP important></WRAP>  |This voltage limit circuit in the DHV hardware limits the voltage (including the modulation input) to the user defined limit when using the G=20 V/V mode.  However, this hardware limit does not cap the modulation input in the G=1 V/V.  Therefore, when operating in the G=1 V/V mode, if the user were to set the nominal voltage set point to the user-defined maximum voltage output point, the output with a +10 V modulation input would exceed the user-defined limit by 10 V |
 ==== Setting the Bias Voltage ==== ==== Setting the Bias Voltage ====
-To set the nominal bias voltage about which the SLICE-DHV will operate on a given channel, touch the DC Bias [V] field on the Home screen.  Depending on the length of the touch, either a view similar to <imgref Vset_knob> allowing rotary knob input or a keypad similar to <imgref keypad> will be displayed.  Set the nominal bias voltage. \\ +To set the bias voltage about which the SLICE-DHV will operate on a given channel, touch the DC Bias [V] field on the Home screen.  Depending on the length of the touch, either a view similar to <imgref Vset_knob> allowing rotary knob input or a keypad similar to <imgref keypad> will be displayed.  Set the nominal bias voltage. \\ 
  
 ==== Turning on the High Voltage ==== ==== Turning on the High Voltage ====
  
 <WRAP center round box 60%> <WRAP center round box 60%>
-| {{ :electric_shock.png?150&nolink }}  | The SLICE-DHV can output up to 200 V without an input signal. It is advised that you power off the device before making connections to the output.                                                      |+| {{ :electric_shock.png?150&nolink }}  | The SLICE-DHV can output up to 200 V without an input signal. It is advised that you power off the device before making connections to the high voltage output.                                                      |
 </WRAP> </WRAP>
 To turn on (turn off) the high-voltage output touch the HV OFF (HV ON) field on the Home screen. To turn on (turn off) the high-voltage output touch the HV OFF (HV ON) field on the Home screen.
Line 245: Line 247:
 The SLICE-DHV has an internal ramp function for sweeping the voltage output. The ramp is a sawtooth wave. The SLICE-DHV has an internal ramp function for sweeping the voltage output. The ramp is a sawtooth wave.
  
-To set the repetition rate((0-30 Hz)) of the ramp, touch the CH 1 (or CH 2) field to see <imgref CH_settings> Touch the Sweep Rate [Hz] field and set the repetition rate. \\+To set the sweep rate((0-30 Hz)) of the ramp, touch the CH 1 (or CH 2) field to see <imgref CH_settings> Touch the Sweep Rate [Hz] field and set the desired rate. \\
  
-To set the amplitude of the ramp((0-200 V)), touch the Range [V] field on the Home screen and set the ramp amplitude. \\+To set the amplitude of the ramp((0-200 V)), touch the Range [V] field on the Home screen and set the desired ramp amplitude. \\
  
 To turn on (or turn off) the ramp, touch the Sweep OFF (or Sweep ON) field to see <imgref sweep_ctrl> Choose the desired operation mode. To turn on (or turn off) the ramp, touch the Sweep OFF (or Sweep ON) field to see <imgref sweep_ctrl> Choose the desired operation mode.
Line 271: Line 273:
  
  
-==== Modulation/Control of the SLICE-DHV Output ==== +==== Modulating the SLICE-DHV Output ==== 
-The user can input an analog voltage signal to control the output of the SLICE-DHV. Before introducing a control signal, make sure you have selected the [[slice:dhv#Setting_the_Operation_Mode|desired Gain/operation mode]] (HBLG or LBHG).  \\ +The user can input an analog voltage signal to control the output of the SLICE-DHV. Before introducing a modulation signal, make sure you have selected the [[slice:dhv#Setting_the_Modulation_Mode|desired modulation gain]].  \\ 
  
-The default modulation input is the SMA connector on the rear panel (bubble 3, <imgref back>).  The user can also program the SLICE-DHV to accept the modulation/control signal from the front-panel INPUT A for Channel 1 and INPUT B for Channel 2.  Only one modulation input for a given channel can be active at any given time.  To toggle between modulation input locations touch the I/O icon on the control bar and then the relevant INPUT field (A for CH1 or B for CH 2; <imgref input_a>). Select OFF for rear-panel input or Modulation Input for front-panel input.+The default modulation input port is the SMA connector on the rear panel (bubble 3, <imgref back>).  The user can also program the SLICE-DHV to accept the modulation signal from the front-panel INPUT A for Channel 1 and INPUT B for Channel 2.  Only one modulation input for a given channel can be active at any given time.  To toggle between modulation input locations touch the I/O icon on the control bar and then the relevant INPUT field (A for CH1 or B for CH 2; <imgref input_a>). Select OFF for rear-panel input or Modulation Input for front-panel input.
  
-While similar in performance, the rear-panel input will have maximum bandwidth and minimum noise.  Use this input when possible.+While similar in performance, the rear-panel SMA input will have minimum noise.  Use this input when possible.
  
  
Line 332: Line 334:
 <imgcaption settings|User-programmable system settings>{{ : slice:dhv:slice-dhv_settings.jpg?430 |}}</imgcaption> <imgcaption settings|User-programmable system settings>{{ : slice:dhv:slice-dhv_settings.jpg?430 |}}</imgcaption>
  
-=== User Interface Appearance ===+=== Screen Brightness and Volume Adjustment ===
 From this screen, adjustments to the brightness of the screen and the volume of the audio feedback can be made.   From this screen, adjustments to the brightness of the screen and the volume of the audio feedback can be made.  
  
 === Input Impedance === === Input Impedance ===
-Change the input impedance of the two front-panel input ports.  Select either 50 Ω or 1 MΩ.+Change the input impedance of the two front-panel input ports.  Select either 50 Ω or 1 MΩ. For most applications of the SLICE-DHV, a 1 MΩ impedance should be chosen.
  
-=== SLICE Firmware === 
  
-From time to time, Vescent will upgrade the firmware for controlling the SLICE-DCC.  The procedure to [[https://github.com/Vescent|upgrade the SLICE-DHV firmware]] is given here. 
  
  
Line 350: Line 350:
  
  
-===== Using the Host GUI =====+===== Using the PC Host GUI =====
 Coming soon, please check back later. Coming soon, please check back later.
 ===== Firmware Update ===== ===== Firmware Update =====
Line 357: Line 357:
 It is possible to control the SLICE-DHV through serial commands.  Click here to access the [[slice:dhv:API|SLICE-DHV API]]. It is possible to control the SLICE-DHV through serial commands.  Click here to access the [[slice:dhv:API|SLICE-DHV API]].
  
-Please contact [[[email protected]|sales [at] vescent [dot] com]] for information. 
  
 +<WRAP round important 100%>
 +Upgrading the SLICE-DHV firmware is not always necessary to use the Serial API. Check your installed firmware version in the settings menu against the most recent firmware version given [[https://github.com/Vescent/SLICE-DHV-Firmware-Upgrade|here]].
 +</WRAP>
 +
 +
 +Please contact [[[email protected]|sales [at] vescent [dot] com]] for information.
 ===== Maintenance ===== ===== Maintenance =====
 There are no user-serviceable parts inside this instrument. Refer all repairs to the manufacturer.  Work performed by persons not authorized by Vescent Photonics may void the warranty. There are no user-serviceable parts inside this instrument. Refer all repairs to the manufacturer.  Work performed by persons not authorized by Vescent Photonics may void the warranty.
slice/dhv.1590014957.txt.gz · Last modified: 2021/08/26 14:26 (external edit)