User Tools

Site Tools


slice:dcc:api

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
slice:dcc:api [2019/12/09 19:20] – [Global SLICE Commands] Michael Radunskyslice:dcc:api [2023/12/06 20:35] (current) Christiana Sasser
Line 45: Line 45:
 The following commands are operational on all SLICE products. The following commands are operational on all SLICE products.
 ---- ----
-<function=ICEfunc|0=#VERSION&1=:None;&2=1.62&-1>+====Firmware Version==== 
 +<function=ICEfunc?0=#VERSION&1=:None;&2=1.62&-1>
 Returns firmware version of System Controller. Returns firmware version of System Controller.
 +/*Note: For the Return Question mark, we had to use a slightly different question mark image. This one: ?. Rather than this one: ?. */
 ---- ----
-<function=ICEfunc|0=_FACTORY&1=I:Slot Number:1;&2=&-1> +====Reset to Factory Default Settings==== 
-Restores "Personality Board" to factory default settings. No return value.  Power cycle the SLICE unit to complete factory reset.+<function=ICEfunc?0=_FACTORY&1=I:SLOT_NUMBER:1;&2=&-1> 
 +Restores "Personality Board" to factory default settings. No return value.  \\ 
 +<WRAP center round box 60%> 
 +| {{ :take-note.png?80&nolink }}  | Power cycle the SLICE unit to complete factory reset. 
 +</WRAP>
 ---- ----
-<function=ICEfunc|0=SAVE&1=:None;&2=SUCCESS&-1> +<function=ICEfunc?0=SAVE&1=:None;&2=SUCCESS&-1> 
-Saves "Personality Board" settings into EEPROM.  Unsaved changes will be lost if board is powered off without issuing a SAVE command. The SAVE command saves the entire configuration into non-volatile memory. A single SAVE command can be issued after any number of configuration changes. When changes are made to the SLICE configuration through the touch screen, the new values are automatically saved and it is not necessary to issue a SAVE command.\\ \\+Saves "Personality Board" settings into EEPROM.  Unsaved changes will be lost if the board is powered off without issuing a SAVE command. The SAVE command saves the entire configuration into non-volatile memory. A single SAVE command can be issued after any number of configuration changes. When changes are made to the SLICE configuration through the touch screen, the new values are automatically saved and it is not necessary to issue a SAVE command.\\ \\
 __Slot Number__\\ __Slot Number__\\
   * 1 = first slot   * 1 = first slot
Line 63: Line 69:
  
 ===== SLICE-DCC-specific Commands ===== ===== SLICE-DCC-specific Commands =====
 +The following commands are specific to the SLICE-DCC dual current controller.\\
 +<WRAP center round box 60%>
 +| {{ :take-note.png?350&nolink }}    | Changes to operation parameters executed by these commands are stored only in RAM.  If you wish to permanently save new parameter values, you must execute a [[slice:dcc:api#global_slice_commands|SAVE command]] after parameter changes. |
 +</WRAP>
 +
 ---- ----
-<function=ICEfunc|0=CONTROL?&1=I:CHANNEL:1&2=0&-1>+<function=ICEfunc?0=CONTROL?&1=I:CHANNEL:1&2=0&-1>
 Returns the current operating mode for channel CHANNEL. In the example, the status of channel 1 is reported to be Constant Current mode, current off.\\ \\ Returns the current operating mode for channel CHANNEL. In the example, the status of channel 1 is reported to be Constant Current mode, current off.\\ \\
 __Channel input range__\\ __Channel input range__\\
Line 74: Line 85:
 3 = Constant Power mode, ON\\ 3 = Constant Power mode, ON\\
 ---- ----
-<function=ICEfunc|0=CONTROL&1=I:CHANNEL:1;I:MODE:3&2=3&-1>+<function=ICEfunc?0=CONTROL&1=I:CHANNEL:1;I:MODE:3&2=3&-1>
 Sets the operating mode to MODE for channel CHANNEL. Returns CONTROL? CHANNEL. In the example, channel 1 is set to Constant Power mode, current on.\\ \\ Sets the operating mode to MODE for channel CHANNEL. Returns CONTROL? CHANNEL. In the example, channel 1 is set to Constant Power mode, current on.\\ \\
 __CHANNEL input range__\\ __CHANNEL input range__\\
Line 84: Line 95:
 3 = Constant Power mode, ON\\ 3 = Constant Power mode, ON\\
 ---- ----
-<function=ICEfunc|0=CURRSET?&1=I:CHANNEL:1&2=0.422800&-1>+<function=ICEfunc?0=CURRSET?&1=I:CHANNEL:1&2=0.422800&-1>
 Returns the operating current set point in Amps for channel CHANNEL. In the example, channel 1 current is set to 0.422800 A.\\ \\  Returns the operating current set point in Amps for channel CHANNEL. In the example, channel 1 current is set to 0.422800 A.\\ \\ 
 __CHANNEL input range__\\ __CHANNEL input range__\\
Line 91: Line 102:
 Current set point of channel CHANNEL in AMPS\\ Current set point of channel CHANNEL in AMPS\\
 ---- ----
-<function=ICEfunc|0=CURRSET&1=I:CHANNEL:1;F:CURRENT:0.288&2=0.288000&-1>+<function=ICEfunc?0=CURRSET&1=I:CHANNEL:1;F:CURRENT:0.288&2=0.288000&-1>
 Sets the set point operating current to CURRENT in Amps for channel CHANNEL. Returns CURRENT? CHANNEL. In the example, the current for channel 1 is set to 0.288 A.((System may not deliver CURRENT Amps due to the high impedance of the specific load or other irregular system configurations.))\\ \\ Sets the set point operating current to CURRENT in Amps for channel CHANNEL. Returns CURRENT? CHANNEL. In the example, the current for channel 1 is set to 0.288 A.((System may not deliver CURRENT Amps due to the high impedance of the specific load or other irregular system configurations.))\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
Line 98: Line 109:
 __Possible system responses__\\ __Possible system responses__\\
 Requested current in Amps or closest value as bounded by unit capacity.\\ Requested current in Amps or closest value as bounded by unit capacity.\\
 +<WRAP center round box 60%>
 +| {{ :take-note.png?200&nolink }} | CURRSET does not turn on or off the current. It only changes the set point value. Use a CONTROL command to change the operation mode. |
 +</WRAP>
 ---- ----
-<function=ICEfunc|0=MAXCURR?&1=I:CHANNEL:2&2=1.435300&-1> +<function=ICEfunc?0=MAXCURR?&1=I:CHANNEL:2&2=1.435300&-1> 
-Returns user-set maximum current in Amps for channel CHANNEL. In the example, the maximum current of channel 2 has been set to 1.435300 A.\\ \\+Returns user-set maximum current in Amps for channel CHANNEL. In the example, the maximum current supplied by channel 2 has been set to 1.435300 A.\\ \\
 __Input range__\\ __Input range__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
Line 106: Line 120:
 Maximum allowed current of channel CHANNEL in AMPS\\ Maximum allowed current of channel CHANNEL in AMPS\\
 ---- ----
-<function=ICEfunc|0=MAXCURR&1=I:CHANNEL:2;F:CURRENT:1.3&2=1.300000&-1>+<function=ICEfunc?0=MAXCURR&1=I:CHANNEL:2;F:CURRENT:1.3&2=1.300000&-1>
 Sets the maximum allowed current to CURRENT in Amps for channel CHANNEL. Returns MAXCURR? CHANNEL. In the example, the maximum allowed current for channel 2 is set to 1.3 A.\\ \\ Sets the maximum allowed current to CURRENT in Amps for channel CHANNEL. Returns MAXCURR? CHANNEL. In the example, the maximum allowed current for channel 2 is set to 1.3 A.\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
Line 114: Line 128:
 Requested current maximum in Amps or closest value as bounded by unit capacity.\\ Requested current maximum in Amps or closest value as bounded by unit capacity.\\
 ---- ----
-<function=ICEfunc|0=CURRENT?&1=I:CHANNEL:1&2=271.8&-1>+<function=ICEfunc?0=CURRENT?&1=I:CHANNEL:1&2=271.8&-1>
 Returns measured current in milliamps for channel CHANNEL. In the example, the measured current of channel 1 is 100//e// mA.((CURRENT? may be < CURRSET if, for instance, the load has higher impedance than can be driven by the SLICE-DCC.))\\ \\ Returns measured current in milliamps for channel CHANNEL. In the example, the measured current of channel 1 is 100//e// mA.((CURRENT? may be < CURRSET if, for instance, the load has higher impedance than can be driven by the SLICE-DCC.))\\ \\
 __Input range__\\ __Input range__\\
Line 121: Line 135:
 Measured current being delivered by channel CHANNEL in milliamps\\ Measured current being delivered by channel CHANNEL in milliamps\\
 ---- ----
-<function=ICEfunc|0=PWRSET?&1=I:CHANNEL:1&2=314.0&-1>+<function=ICEfunc?0=PWRSET?&1=I:CHANNEL:1&2=314.0&-1>
 Returns the Constant Power Mode power set point for channel CHANNEL. In the example, the power set point of channel 1 is 314.0 mW.\\ \\ Returns the Constant Power Mode power set point for channel CHANNEL. In the example, the power set point of channel 1 is 314.0 mW.\\ \\
 __Input range__\\ __Input range__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
 ---- ----
-<function=ICEfunc|0=PWRSET&1=I:CHANNEL:2;F:POWER:314.0&2=1.3&-1>+<function=ICEfunc?0=PWRSET&1=I:CHANNEL:2;F:POWER:314.0&2=314.0&-1>
 Sets the set point power level in milliwatts to which the Constant Power Mode will attempt to servo for channel CHANNEL. Returns PWRSET? CHANNEL. In the example, the set point power for channel 2 is set to 314.0 mW.\\ \\ Sets the set point power level in milliwatts to which the Constant Power Mode will attempt to servo for channel CHANNEL. Returns PWRSET? CHANNEL. In the example, the set point power for channel 2 is set to 314.0 mW.\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
Line 134: Line 148:
 Requested power set point or closest value as bounded by unit capacity.\\ Requested power set point or closest value as bounded by unit capacity.\\
 ---- ----
-<function=ICEfunc|0=POWER?&1=I:CHANNEL:1&2=314.0&-1>+<function=ICEfunc?0=POWER?&1=I:CHANNEL:1&2=314.0&-1>
 Returns the measured power for channel CHANNEL in milliwatts. In the example, the power measured at channel 1 is 314.0 mW.\\ \\ Returns the measured power for channel CHANNEL in milliwatts. In the example, the power measured at channel 1 is 314.0 mW.\\ \\
 __Input range__\\ __Input range__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
 ---- ----
-<function=ICEfunc|0=CVOLT?&1=I:CHANNEL:1&2=3.345&-1>+<function=ICEfunc?0=CVOLT?&1=I:CHANNEL:1&2=3.345&-1>
 Returns the measured compliance voltage across channel CHANNEL in volts. In the example, the voltage drop across channel 1 is 3.345 V.\\ \\ Returns the measured compliance voltage across channel CHANNEL in volts. In the example, the voltage drop across channel 1 is 3.345 V.\\ \\
 __Input range__\\ __Input range__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
 ---- ----
-<function=ICEfunc|0=GAIN?&1=I:CHANNEL:1&2=30.000000&-1> +<function=ICEfunc?0=GAIN?&1=I:CHANNEL:1&2=30.000000&-1> 
-Returns the Gain of the Constant Power feedback loop for channel CHANNEL in dB. In the example, the Gain for Constant Power mode feedback for channel 1 is 30.000000 dB.\\ \\+Returns the Integral Gain of the Constant Power feedback loop for channel CHANNEL in dB. In the example, the Gain for Constant Power mode feedback for channel 1 is +30.000 000 dB. The default value of the Gain is +30.000 000 dB.\\ \\
 __Input range__\\ __Input range__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
 ---- ----
-<function=ICEfunc|0=GAIN&1=I:CHANNEL:2;F:GAIN:-31.41596&2=-31.41596&-1> +<function=ICEfunc?0=GAIN&1=I:CHANNEL:2;F:GAIN:-31.41596&2=-31.41596&-1> 
-Sets the Gain of the Constant Power feedback loop for channel CHANNEL. Returns GAIN? CHANNEL. In the example, the Gain of the Constant Power feedback loop is set to -31.41596 dB.\\ \\+Sets the Integral Gain of the Constant Power feedback loop for channel CHANNEL. Returns GAIN? CHANNEL. In the example, the Gain of the Constant Power feedback loop is set to -31.41596 dB.\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
-GAIN: (TBD)\\+GAIN: (-100 to +100)\\
 ---- ----
-<function=ICEfunc|0=RESPVTY?&1=I:CHANNEL:1&2=0.0035&-1>+<function=ICEfunc?0=RESPVTY?&1=I:CHANNEL:1&2=0.0035&-1>
 Returns the Constant Power mode external (customer-supplied) detector responsivity in Amps per Watt for channel CHANNEL. In the example, the responsivity of the detector for channel 1 is 0.0035 A/W.\\ \\ Returns the Constant Power mode external (customer-supplied) detector responsivity in Amps per Watt for channel CHANNEL. In the example, the responsivity of the detector for channel 1 is 0.0035 A/W.\\ \\
 __Input range__\\ __Input range__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
 ---- ----
-<function=ICEfunc|0=RESPVTY&1=I:CHANNEL:2;F:GAIN:0.0035&2=0.0035&-1>+<function=ICEfunc?0=RESPVTY&1=I:CHANNEL:1;F:RESPONSIVITY:0.0035&2=0.0035&-1>
 Sets the Constant Power mode external (customer-supplied) detector responsivity in Amps per Watt for channel CHANNEL. Returns RESPVTY? CHANNEL. In the example, the responsivity of the detector for channel 1 is set to 0.0035 A/W.\\ \\ Sets the Constant Power mode external (customer-supplied) detector responsivity in Amps per Watt for channel CHANNEL. Returns RESPVTY? CHANNEL. In the example, the responsivity of the detector for channel 1 is set to 0.0035 A/W.\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
 CHANNEL: {1,2}\\ CHANNEL: {1,2}\\
-GAIN: (TBD)\\+RESPONSIVITY: (TBD)\\
 ---- ----
-<function=ICEfunc|0=POL?&1=I:CHANNEL:1&2=OFF&-1>+<function=ICEfunc?0=POL?&1=I:CHANNEL:1&2=OFF&-1>
 Returns the Constant Power mode Optical Power polarity setting of the input transimpedance amplifier for channel CHANNEL. In the example, the optical power polarity for the channel 1 transimpedance amplifier is positive (default).\\ \\ Returns the Constant Power mode Optical Power polarity setting of the input transimpedance amplifier for channel CHANNEL. In the example, the optical power polarity for the channel 1 transimpedance amplifier is positive (default).\\ \\
 __Input range__\\ __Input range__\\
Line 174: Line 188:
 OFF = Positive Polarity (default) OFF = Positive Polarity (default)
 ---- ----
-<function=ICEfunc|0=POLARITY&1=I:CHANNEL:2;I:POL:1&2=ON&-1>+<function=ICEfunc?0=POLARITY&1=I:CHANNEL:2;I:POL:1&2=ON&-1>
 Sets the Polarity of the input transimpedance amplifier for Constant Power Mode for channel CHANNEL. Returns POL? CHANNEL. In the example, the polarity of the transimpedance amplifier for channel 2 is set to Negative (ON).\\ \\ Sets the Polarity of the input transimpedance amplifier for Constant Power Mode for channel CHANNEL. Returns POL? CHANNEL. In the example, the polarity of the transimpedance amplifier for channel 2 is set to Negative (ON).\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
Line 183: Line 197:
 1 = Negative = ON 1 = Negative = ON
 ---- ----
-<function=ICEfunc|0=INTERLK?&1=:None&2=ON&-1>+<function=ICEfunc?0=INTERLK?&1=:None&2=ON&-1>
 Returns the status of the interlock. In the example, the interlock is closed and the system is operational.\\ \\ Returns the status of the interlock. In the example, the interlock is closed and the system is operational.\\ \\
 __Possible Responses__\\ __Possible Responses__\\
 ON = Interlock circuit is closed and unit is operational\\ ON = Interlock circuit is closed and unit is operational\\
-OFF = Interlock circuit is open and the unit is disabled+OFF = Interlock circuit is open and the unit is disabled\\ 
 +---- 
 +<function=ICEfunc?0=AMODSEL??&1=I:CHANNEL:1&2=1&-1> 
 +Returns the analog modulation source for channel CHANNEL. In the example, the modulation source for channel 1 is the front-panel input (labeled A).\\ \\ 
 +__Return Values__\\ 
 +0 = Modulation input is the SMA connector labeled Mod In on the back of the unit for the respective channel (default).\\ 
 +1 = Modulation input is the front panel Input BNC\\ 
 +When using the front-panel input:\\ 
 +  * Channel 1 uses input A 
 +  * Channel 2 uses input B 
 + 
 +---- 
 +<WRAP center round box 40%> 
 +| {{ :take-note.png?40&nolink }} | Only one modulation input can be active at any given time. | 
 +</WRAP> 
 +---- 
 +<function=ICEfunc?0=AMODSEL&1=I:CHANNEL:2;I:SOURCE:1&2=1&-1> 
 +Sets the modulation input source for channel CHANNEL. Returns AMODSEL? CHANNEL. In the example, the modulation input source for channel 2 is set to the front-panel BNC (input B).\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +SOURCE: {0,1}\\ 
 +0 = Modulation input is the SMA connector labeled Mod In on the back of the unit for the respective channel (default).\\ 
 +1 = Modulation input is the front panel Input BNC\\ 
 +When using the front-panel input:\\ 
 +  * Channel 1 uses input A 
 +  * Channel 2 uses input B 
 + 
 +---- 
 +<function=ICEfunc?0=AOUTSEL??&1=I:CHANNEL:1&2=1&-1> 
 +Returns the location to which the measured power of the monitor photodiode is delivered for channel CHANNEL <color red>TRANSFER FUNCTION?</color>. In the example, the measured power of the monitor photodiode for channel 1 is delivered to the front-panel output (output 1).\\ \\ 
 +__Return Values__\\ 
 +0 = The measured power of the monitor photodiode is not delivered to any output port\\ 
 +1 = The measured power of the monitor photodiode is delivered to front-panel output BNC\\ 
 +__2 = Optical Power on Analog Output Optical Power from Optical Power input SMA connector on back panel <color red>NEEDS CLARIFICATION</color>__ \\ 
 +When using the front-panel output:\\ 
 +  * Channel 1 uses input 1 
 +  * Channel 2 uses input 2 
 + 
 +---- 
 +<function=ICEfunc?0=AOUTSEL&1=I:CHANNEL:1;I:DESTINATION:1&2=1&-1> 
 +Sets the location to which the measured power of the monitor photodiode is delivered for channel CHANNEL <color red>TRANSFER FUNCTION?</color>. Returns AOUTSEL? CHANNEL. In the example, the measured power of the monitor photodiode for channel 1 is directed to be delivered to the front-panel output (output 1).\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +DESTINATION: {0,1,2}\\ 
 +0 = The measured power of the monitor photodiode is not delivered to any output port\\ 
 +1 = The measured power of the monitor photodiode is delivered to front-panel output BNC\\ 
 +__2 = Optical Power on Analog Output Optical Power from Optical Power input SMA connector on back panel <color red>NEEDS CLARIFICATION</color>__ \\ 
 +When using the front-panel output:\\ 
 +  * Channel 1 uses output 1 
 +  * Channel 2 uses output 2 
 + 
 +---- 
 +<function=ICEfunc?0=TRIGIN??&1=I:CHANNEL:1&2=1&-1> 
 +Returns the effect of the input trigger on channel CHANNEL. In the example, the input trigger controls the operation of channel 1.\\ \\ 
 +__Return Values__\\ 
 +0 = Trigger input disabled \\ 
 +1 = Trigger input controls operation \\ 
 +  * Trigger input high enables channel \\ 
 +  * Trigger input low disables channel\\ 
 +<WRAP center round box 60%> 
 +| {{ :take-note.png?100&nolink }}    | The trigger function can operate on both channels, a single channel, or neither channel | 
 +</WRAP> 
 + 
 +---- 
 +<function=ICEfunc?0=TRIGIN&1=I:CHANNEL:1;I:STATUS:1&2=1&-1> 
 +Sets the effect of the input trigger on channel CHANNEL. Returns TRIGIN? CHANNEL. In the example, the input trigger is given control over channel 1.\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +STATUS: {0,1}\\ 
 +0 = Trigger input disabled \\ 
 +1 = Trigger input controls operation \\ 
 +  * Trigger input high enables channel \\ 
 +  * Trigger input low disables channel\\ 
 + 
 + 
 +---- 
 +<function=ICEfunc?0=TRIGOUT??&1=I:CHANNEL:1&2=1&-1> 
 +Returns the response of the output trigger to the status of the interlock. In the example, the output trigger will echo the interlock circuit status.\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +__Return Values__\\ 
 +0 = Trigger output does not respond to interlock status \\ 
 +1 = Trigger output echoes interlock status \\ 
 +  * Trigger output high: interlock is open \\ 
 +  * Trigger output low: interlock is closed\\ 
 + 
 +---- 
 +<function=ICEfunc?0=TRIGOUT&1=I:CHANNEL:1;I:STATUS:1&2=1&-1> 
 +Sets the response of the output trigger to the interlock status. Returns TRIGOUT? CHANNEL. In the example, the output trigger is directed to echo the status the interlock circuit.\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +STATUS: {0,1}\\ 
 +0 = Trigger output does not respond to interlock status \\ 
 +1 = Trigger output echoes interlock status \\ 
 +  * Trigger output high: interlock open \\ 
 +  * Trigger output low: interlock closed\\ 
 + 
 +---- 
 +<function=ICEfunc?0=HWTEMP??&1=I:CHANNEL:1&2=43.358&-1> 
 +Returns the temperature of the SLICE-DCC "personality board" at the sensor point for channel CHANNEL. In the example, the temperature at the sensor point for channel 1 is 43.358°C.\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +---- 
 +<function=ICEfunc?0=PWRMAX??&1=:None&2=41.5&-1> 
 +Returns the maximum power (in Watts) available as configured. In the example, the power available is 41.5 W.\\ \\ 
 +__Input parameter ranges__\\ 
 +CHANNEL: {1,2}\\ 
 +__Possible output values__\\ 
 +Power: (0 to 42.5 W)
 ---- ----
 ===== Error Handling ===== ===== Error Handling =====
 ---- ----
-<function=ICEfunc|0=ERROR?&1=I:CHANNEL:2&2=49152&-1>+<function=ICEfunc?0=ERROR?&1=I:CHANNEL:2&2=49152&-1>
 Returns the error code for channel CHANNEL. In the example, the error code for channel 2 is 49152 (No errors).\\ \\ Returns the error code for channel CHANNEL. In the example, the error code for channel 2 is 49152 (No errors).\\ \\
 __Possible Responses__\\ __Possible Responses__\\
Line 200: Line 322:
 49408 = Device total power limit exceeded\\ 49408 = Device total power limit exceeded\\
 ---- ----
-<function=ICEfunc|0=ERROR&1=I:CHANNEL:2;I:CODE:128&2=49152&-1>+<function=ICEfunc?0=ERROR&1=I:CHANNEL:2;I:CODE:128&2=49152&-1>
 Clears an error code for channel CHANNEL. Returns post-command ERROR? CHANNEL. In the example, error code 49280 (interlock circuit open) is cleared.\\ \\ Clears an error code for channel CHANNEL. Returns post-command ERROR? CHANNEL. In the example, error code 49280 (interlock circuit open) is cleared.\\ \\
 __Input parameter ranges__\\ __Input parameter ranges__\\
slice/dcc/api.1575919207.txt.gz · Last modified: 2021/08/26 14:26 (external edit)