User Tools

Site Tools


ice:oem_integration

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
ice:oem_integration [2014/07/22 20:18] – [Board Connections] jtshugrueice:oem_integration [2020/03/06 01:52] – [Power Draw by Module] Michael Radunsky
Line 34: Line 34:
 Power can be provided directly to the internal power bus headers if no master controller is used in the system, but this is highly discouraged as the power requirements are much more strict in order to prevent damaging system components. There are three power bus connectors shown in <imgref pcbSchematic> that utilize 0.1 inch double row board to board headers. The 6x2 headers ([[http://cloud.samtec.com/catalog_english/ESQ_TH.PDF|Samtec PN: ESQ-106-13-T-D]]) on either side of the pcb  carry 5V_A, +15V, +12V, -12V, -15V power rails and GND_A and GND signal. Both of the headers must be powered by the same power rails and be connected to the same grounds. The signal name GND_A is the return current path for the 5V_A rail which provides high current to daughter modules which require it (such as the [[ice:quadtemp|ICE-QT1]]). The 4x2 header ([[http://cloud.samtec.com/catalog_english/ESQ_TH.PDF|Samtec PN: ESQ-104-13-T-D]]) in the center of the pcb carries the digital communications bus and +5V_D power rail. The 5V_D power rail is designed to provide power to noisier digital components without contaminating the other analog power rails. This power rail can be "starred" off of the 5V_A line. All ground connections (GND, GND_A, GND_D) are intended to be starred at the power supply. The power sequence for turning on and off each voltage rail must be followed as described in the [[ice:oem_integration#power_sequencing|power sequencing section]] or damage will occur. Power can be provided directly to the internal power bus headers if no master controller is used in the system, but this is highly discouraged as the power requirements are much more strict in order to prevent damaging system components. There are three power bus connectors shown in <imgref pcbSchematic> that utilize 0.1 inch double row board to board headers. The 6x2 headers ([[http://cloud.samtec.com/catalog_english/ESQ_TH.PDF|Samtec PN: ESQ-106-13-T-D]]) on either side of the pcb  carry 5V_A, +15V, +12V, -12V, -15V power rails and GND_A and GND signal. Both of the headers must be powered by the same power rails and be connected to the same grounds. The signal name GND_A is the return current path for the 5V_A rail which provides high current to daughter modules which require it (such as the [[ice:quadtemp|ICE-QT1]]). The 4x2 header ([[http://cloud.samtec.com/catalog_english/ESQ_TH.PDF|Samtec PN: ESQ-104-13-T-D]]) in the center of the pcb carries the digital communications bus and +5V_D power rail. The 5V_D power rail is designed to provide power to noisier digital components without contaminating the other analog power rails. This power rail can be "starred" off of the 5V_A line. All ground connections (GND, GND_A, GND_D) are intended to be starred at the power supply. The power sequence for turning on and off each voltage rail must be followed as described in the [[ice:oem_integration#power_sequencing|power sequencing section]] or damage will occur.
 ==== Power Draw by Module ==== ==== Power Draw by Module ====
-The power supply capacity for the supply used to power the ICE stack must be sized appropriately to handle expected power draw for the modules selected. Current draw is listed in the specifications for each of the daughter modules. The typical values indicate the quiescent current draw, and the max values represent worst case power draw depending on the functionality of the board. For example, the [[ice:quadtemp|ICE-QT1]] quad temperature controller has a maximum expected current draw on the 5V_A rail that depends on the maximum current supplied to thermo-electric coolers (TEC's). The maxiumum current here depends on what the user sets the current limit to for each temperature controller section. The max spec given is based on the highest current limit being set for each section, and the power supply should be capable of supply that current unless those current limits are set lower. Another example are the [[ice:servo-peaklock|ICE-CS1]] and [[ice:servo-opls|ICE-CP1]] modules, both of which include a laser current controller. The current draw on the +15V depends on the laser current output, which has a maximum output current that can be used to determine total current draw. This is detailed in the specifications charts on the respective product pages for all these modules.+The power supply capacity for the supply used to power the ICE stack must be sized appropriately to handle expected power draw for the modules selected. Current draw is listed in the specifications for each of the daughter modules. The typical values indicate the quiescent current draw, and the max values represent worst case power draw depending on the functionality of the board. For example, the [[ice:quadtemp|ICE-QT1]] quad temperature controller has a maximum expected current draw on the 5V_A rail that depends on the maximum current supplied to thermo-electric coolers (TEC's). The maximum current here depends on what the user sets the current limit to for each temperature controller section. The max spec given is based on the highest current limit being set for each section, and the power supply should be capable of supply that current unless those current limits are set lower. Another example are the [[ice:servo-peaklock|ICE-CS1]] and [[ice:servo-opls|ICE-CP1]] modules, both of which include a laser current controller. The current draw on the +15V depends on the laser current output, which has a maximum output current that can be used to determine total current draw. This is detailed in the specifications charts on the respective product pages for all these modules.
  
 The [[ice:master|ICE-MC1 master controller]] and ICE power bus have a maximum amount of current that can be routed. This is specified in the [[ice:master#specifications|maximum power consumption specification]] on the [[ice:master|ICE-MC1 product page]]. When choosing how many and which type of each daughter module a master controller can support, the expected current draw of all daughter modules must not exceed the maximum power consumption specification for the master controller. For example, the master controller and ICE power bus can only distribute a maximum of 10 amps on the 5V_A rail. If three [[ice:quadtemp|ICE-QT1]] temperature controllers were chosen as daughter modules, and all the TEC current limits were left at maximum, the three modules could potentially draw 12 amps. This would exceed the capacity of the power bus and master controller. The master controller provide over-current protection, so it would shut down power to the daughter modules and enter a fault condition if 12 amps were attempted to be drawn from the 5V_A rail. The [[ice:master|ICE-MC1 master controller]] and ICE power bus have a maximum amount of current that can be routed. This is specified in the [[ice:master#specifications|maximum power consumption specification]] on the [[ice:master|ICE-MC1 product page]]. When choosing how many and which type of each daughter module a master controller can support, the expected current draw of all daughter modules must not exceed the maximum power consumption specification for the master controller. For example, the master controller and ICE power bus can only distribute a maximum of 10 amps on the 5V_A rail. If three [[ice:quadtemp|ICE-QT1]] temperature controllers were chosen as daughter modules, and all the TEC current limits were left at maximum, the three modules could potentially draw 12 amps. This would exceed the capacity of the power bus and master controller. The master controller provide over-current protection, so it would shut down power to the daughter modules and enter a fault condition if 12 amps were attempted to be drawn from the 5V_A rail.
Line 134: Line 134:
 ==== Board Connections ==== ==== Board Connections ====
 Each ICE daughter module exposes analog interfaces on the side opposite to the copper heatsink tabs. Each module's circuit board may use a mixture of the connectors described in this section. Each connector and an associated part number shown below such that the OEM integrator my chose a suitable mating connector for their system. Consult the product pages for each ICE module to determine the type, position, and function of any connectors used. See the respective product pages for each OEM board for a diagram of the positioning of any connectors. Each ICE daughter module exposes analog interfaces on the side opposite to the copper heatsink tabs. Each module's circuit board may use a mixture of the connectors described in this section. Each connector and an associated part number shown below such that the OEM integrator my chose a suitable mating connector for their system. Consult the product pages for each ICE module to determine the type, position, and function of any connectors used. See the respective product pages for each OEM board for a diagram of the positioning of any connectors.
 +
 +For all ICE daughter modules, the circuit boards are designed such that all I/O connectors will be on a single side, and the copper heatsinking tabs will be on the opposite side. The master controller (ICE-MC1) also follows this convention, with the exception being the serial port flat flex connector.
  
 === Ultra-Miniature Coax Connector (UMCC) === === Ultra-Miniature Coax Connector (UMCC) ===
ice/oem_integration.txt · Last modified: 2021/08/26 15:26 by 127.0.0.1