User Tools

Site Tools


d2:spectroscopy_module_210

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
d2:spectroscopy_module_210 [2016/08/30 18:30] – [Inputs, Outputs, and Controls] Michael Radunskyd2:spectroscopy_module_210 [2024/03/27 15:58] (current) – [Spectroscopy Module] Thomas Bersano
Line 11: Line 11:
 Document Last Updated on ~~LASTMOD~~ Document Last Updated on ~~LASTMOD~~
  
-Please read [[:limited_warranty|Limited Warranty]] and [[:warnings_cautions|General Warnings and Cautions]] prior to operating the D2-210.  D2-210 [[http://www.vescent.com/products/electro-optics/d2-210-spectroscopy-module/|website]] and [[http://www.vescent.com/wp-content/uploads/2014/07/D2-210_2.3.pdf|data sheet]].+Please read [[:limited_warranty|Limited Warranty]] and [[:warnings_cautions|General Warnings and Cautions]] prior to operating the D2-210.  D2-210 [[http://www.vescent.com/products/electro-optics/d2-210-spectroscopy-module/|website]] and [[https://vescent.com/us/amfile/file/download/file/58/product/161/|data sheet]].
  
 =====Description===== =====Description=====
Line 27: Line 27:
   * D2-210 Spectroscopy Module   * D2-210 Spectroscopy Module
   * VPN00463 SMA cable (6ft)   * VPN00463 SMA cable (6ft)
-Also look for: 
   * VPN00410 Hirose-to-D Sub 9-pin (shipped under separate line item; specify for use with D2)   * VPN00410 Hirose-to-D Sub 9-pin (shipped under separate line item; specify for use with D2)
   * VPN00475 Hirose-to-Hirose power cord (shipped under separate line item; specify for use with ICE)   * VPN00475 Hirose-to-Hirose power cord (shipped under separate line item; specify for use with ICE)
 +  * VPN00367 Adjustment tool
  
  
Line 45: Line 45:
 =====Specifications===== =====Specifications=====
 <WRAP center round box 500px><tabcaption specs> <WRAP center round box 500px><tabcaption specs>
-^ ^  Value  ^  Units  +                                   ^  Value          ^  Units   
-^**Input Light Level**  |  2< P <1000  |  mW  +^ **Input Light Level**              |  2< P <1000     |  mW      
-^**Photodiode Amplifier**        +^ **Photodiode Amplifier**                                    
-<html> &nbsp;&nbsp; </html>  Transimpedance (signal) |  40,000  |  Ω  +| Transimpedance (signal)            |  40,000         |  Ω       
-<html> &nbsp;&nbsp; </html>Bandwidth (signal) |  5  |  MHz  +| Bandwidth (signal)                 |  5              |  MHz     
-<html> &nbsp;&nbsp; </html>Noise @ 5 MHz  |  <80  |  nV / <HTML> <span style="text-decoration: overline;">Hz</span></HTML> +| Noise @ 5 MHz                      |  <80            |  nV /√Hz | 
-^Set Temperature  |  ~25 to 65  |  °C  +^ Set Temperature                    |  ~25 to 65      |  °C      
-^Temperature Stability|  <0.1  |  °C  +^ Temperature Stability              |  <0.1           |  °C      
-^Beam Height|  0.95  |  inches +^ Beam Height                        |  0.95           |  inches 
-^Total package Size \\ (L x W x H)|  3.6 x 5 x 1.7  |  inches  |+^ Total package Size \\ (L x W x H)  |  3.6 x 5 x 1.7  |  inches  |
 </tabcaption> </tabcaption>
 </WRAP> </WRAP>
Line 61: Line 61:
 The D2-210 requires +5 and ±15 VDC and ground to operate.  The power input is via a female 6-pin Hirose connector [[http://www.digikey.com/product-search/en?KeyWords=HR10A-7TR-6SA(73)&WT.z_header=search_go|HR10A-7TR-6SA(73)]].  Depending on your order configuration, you should have received a power cable with this connector on one end and either the same on the other end (typically for use with ICE products) or a DB-9 connector (for use with D2-products). The D2-210 requires +5 and ±15 VDC and ground to operate.  The power input is via a female 6-pin Hirose connector [[http://www.digikey.com/product-search/en?KeyWords=HR10A-7TR-6SA(73)&WT.z_header=search_go|HR10A-7TR-6SA(73)]].  Depending on your order configuration, you should have received a power cable with this connector on one end and either the same on the other end (typically for use with ICE products) or a DB-9 connector (for use with D2-products).
  
-If you are using the DB9-to-Hirose cable, but not a Vescent D2-005 power supply, <tabref connector> below details which pins on the Hirose require which voltages.  The figure below may be useful. +If you are using the DB9-to-Hirose cable, but not a Vescent D2-005 power supply, <tabref connector> below details which pins on the Hirose require which voltages.  
- +
-<imgcaption image1|Pin numbering on female Hirose 6-pin connector>{{:d2:d2-160:hirose-connector.png?200 }}</imgcaption>+
 =====Theory of Operation===== =====Theory of Operation=====
 <WRAP center round box 620px> <WRAP center round box 620px>
  
-[{{ :d2:d2-210:d2-210_top.jpg?nolink&600 |D2-210 Spectroscopy Module with cover removed.}}]</WRAP> +<imgcaption 210_drawing|Beam path and component map>[{{ :d2:d2-210:d2-210_top.jpg?nolink&600 |D2-210 Spectroscopy Module with cover removed.}}]</imgcaption></WRAP> 
-<WRAP center round box 420px>[{{ :d2:d2-210:d2-210-temp-adjust.jpg?400 |2nd revision of temperature control board}}]</WRAP>+<WRAP center round box 420px><imgcaption temp_adj_photo>[{{ :d2:d2-210:d2-210-temp-adjust.jpg?400 |2nd revision of temperature control board}}]</imgcaption></WRAP>
  
 Input light passes through an adjustable λ/2 waveplate and polarizing beamsplitter (PBS) that directs a user-controlled portion of the beam to the vapor cells and detectors.  (For the fiber-coupled option the user will generally input most of the light.) The beam is then passed through a cleanup PBS and split on a 50:50 non-polarizing beamsplitter (NPBS).  One portion is then passed through a reference vapor cell (Doppler subtraction option) or passed directly to the reference photodiode. Input light passes through an adjustable λ/2 waveplate and polarizing beamsplitter (PBS) that directs a user-controlled portion of the beam to the vapor cells and detectors.  (For the fiber-coupled option the user will generally input most of the light.) The beam is then passed through a cleanup PBS and split on a 50:50 non-polarizing beamsplitter (NPBS).  One portion is then passed through a reference vapor cell (Doppler subtraction option) or passed directly to the reference photodiode.
Line 74: Line 72:
 The remaining portion is passed through a fixed λ/2 waveplate and PBS to split off the pump beam from the probe beam.  The pump beam is directed to the Output Optics assembly where it is combined with the probe beam on a PBS in a counter-propagating configuration. The pump beam is dumped through the reflection port of the PBS that separated the pump and probe and terminates on the wall of the housing.  The probe is detected on the signal photodiode. The remaining portion is passed through a fixed λ/2 waveplate and PBS to split off the pump beam from the probe beam.  The pump beam is directed to the Output Optics assembly where it is combined with the probe beam on a PBS in a counter-propagating configuration. The pump beam is dumped through the reflection port of the PBS that separated the pump and probe and terminates on the wall of the housing.  The probe is detected on the signal photodiode.
  
-The beam diameters were designed to provide enough photocurrent (~50-100μA) to give shot-noise-limited performance out to 5 MHz while limiting saturation broadening.  For Vescent's DBR lasers, the bandwidth is useful to provide for tight and stable locking by feedback to injection current.  +The beam diameters were designed to provide enough photocurrent (~50-100 μA) to give shot-noise-limited performance out to 5 MHz while limiting saturation broadening.  For Vescent's DBR lasers, the bandwidth is useful to provide for tight and stable locking by feedback to injection current.  
  
  
Line 80: Line 78:
  
 **Input Connector**** (****6-pin circular)** **Input Connector**** (****6-pin circular)**
 +<WRAP center round important 60%>Never connect this device to its power supply when the power supply is switched on and supplying power.  Always turn off the power supply, make connections to the device, and then re-energize the power supply.
 +</WRAP>
  
-Power and temperature control signals from the D2-series power bus or other power supply are made through a 6-pin circular connector ([[http://www.digikey.com/product-search/en?KeyWords=HR10A-7TR-6SA(73)&WT.z_header=search_go|HR10A-7TR-6SA(73)]]).  The pin definitions (pin numbers are marked on the connectors) are listed below.+Power and temperature control signals from the D2-series power bus, the ICE-PB1, or other power supply are made through a 6-pin circular connector ([[http://www.digikey.com/product-search/en?KeyWords=HR10A-7TR-6SA(73)&WT.z_header=search_go|HR10A-7TR-6SA(73)]]).  The pin definitions (pin numbers are marked on the connectors) are listed below.  <imgref image1> below may be useful.
  
-<WRAP center round box 900px><tabcaption connector> +<imgcaption image1|Pin numbering on female Hirose 6-pin connector>{{  :d2:d2-160:hirose-connector.png?200  }}</imgcaption> 
-^  Hirose Pin  ^  DB-9 Pin (if applicable)  ^  Input Voltage  ^  Max Current Draw  ^  Notes  ^+ 
 +<WRAP center round box 900px><tabcaption connector|Power cable pin out
 +^  Hirose Pin\\ (VPN00410 and VPN00475)   DB-9 Pin (VPN00410)  ^  Input Voltage  ^  Max Current Draw  ^  Notes  ^
 |  1  |  4 and 5    Signal Power Ground  | | Return path for power rail. | |  1  |  4 and 5    Signal Power Ground  | | Return path for power rail. |
 |  2  |  8  |  -7 V to -15 V  |  100mA  | See note below. | |  2  |  8  |  -7 V to -15 V  |  100mA  | See note below. |
Line 92: Line 94:
 |  6  |  1 and 2  |  +5 V Ground  | | Return path for high current +5V. | |  6  |  1 and 2  |  +5 V Ground  | | Return path for high current +5V. |
 </tabcaption></WRAP> </tabcaption></WRAP>
-<wrap lo>Note:  When powering the D2-210 with supplies other than a D2-005, pins 5 and 6 can be placed between 7-15 V. They need not be symmetric, but both supply rails are always required.</wrap> 
-<wrap lo> See D2-005 manual for pin out on D-Sub 9-pin connector.</wrap> 
- 
  
  
Line 123: Line 122:
 **Temperature Bias Adj.** **Temperature Bias Adj.**
  
-For the Doppler subtraction option this control enables the user to input a small temperature difference between the reference and signal vapor cells.  In the fully CCW position the signal vapor cell heater gets all the current.  In the full CW position the reference cell heater gets twice the current as the signal cell.  This adjustment can be used to place the optimum point for Doppler Subtraction closer to zero Volts.+[Note: this adjustment is only available on older D2-210 models.] For the Doppler subtraction option this control enables the user to input a small temperature difference between the reference and signal vapor cells.  In the fully CCW position the signal vapor cell heater gets all the current.  In the full CW position the reference cell heater gets twice the current as the signal cell.  This adjustment can be used to place the optimum point for Doppler Subtraction closer to zero Volts.
  
 This adjustment only has an effect with the -DS, Doppler Subtraction option. This adjustment only has an effect with the -DS, Doppler Subtraction option.
Line 129: Line 128:
 **Tilt Plate** **Tilt Plate**
  
-A polarizing beamsplitter (PBS) is fixed to a ball joint formed by a truncated steel ball held by a conformal brass ring.  Two cone screws clamp the ring against the ball and fix the position of the PBS.  See Alignment Procedure below for instructions on how to align and fix the PBS.{{ :d2:d2-210:tilt_plate.png?nolink&400 |}}+A polarizing beamsplitter (PBS) is fixed to a ball joint formed by a truncated steel ball held by a conformal brass ring.  Two cone screws clamp the ring against the ball and fix the position of the PBS.  See Alignment Procedure below for instructions on how to align and fix the PBS.<WRAP center round box 420px> 
 + 
 +<imgcaption tilt_plate|Input beam tilt plate adjustment>{{ :d2:d2-210:tilt_plate.png?nolink&400 |}}</imgcaption></WRAP>
  
 **λ/2 Waveplate** **λ/2 Waveplate**
Line 135: Line 136:
 A waveplate attached to the front plate by magnets can be used to select the splitting fraction of the Tilt Plate PBS. A waveplate attached to the front plate by magnets can be used to select the splitting fraction of the Tilt Plate PBS.
  
-{{ :d2:d2-210:halfwave_adjuster.jpg?nolink&400 |}}+<WRAP center round box 420px> 
 + 
 +<imgcaption halfwaveplate|Half wave plate adjuster>{{ :d2:d2-210:halfwave_adjuster.jpg?nolink&400 |}}</imgcaption></WRAP>
  
  
Line 184: Line 187:
  
  
-The following images are representative of spectroscopy for <sup>87</sup>Rb with and without Doppler subtraction.  Note that Doppler subtraction has a minimal effect on peak lock signal generated by dithering the laser (green traces).+The following images are representative of spectroscopy for <sup>87</sup>Rb with (<imgref ds>and without Doppler subtraction (<imgref no-ds>).  Note that Doppler subtraction has a minimal effect on peak lock signal generated by dithering the laser (green traces).
  
 +<imgcaption image1|Pin numbering on female Hirose 6-pin connector>{{  :d2:d2-160:hirose-connector.png?200  }}</imgcaption>
  
-{{ :d2:d2-210:sas.jpg?nolink |}} +<imgcaption no-ds|Non-Doppler subtracted side- and peak-lock spectra>{{ :d2:d2-210:sas.jpg?nolink |}}</imgcaption> 
-{{ :d2:d2-210:sas_w_ds.jpg?nolink |}}+<imgcaption ds|Doppler subtracted side- and peak-lock spectra>{{ :d2:d2-210:sas_w_ds.jpg?nolink |}}</imgcaption>
d2/spectroscopy_module_210.1472581846.txt.gz · Last modified: 2021/08/26 14:26 (external edit)