User Tools

Site Tools


d2:offset_phase_lock_servo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
d2:offset_phase_lock_servo [2019/11/20 02:10] – [Front Panel] Michael Radunskyd2:offset_phase_lock_servo [2021/04/26 22:19] – external edit 127.0.0.1
Line 195: Line 195:
 ====Right Side Panel ==== ====Right Side Panel ====
  
-<imgcaption opls_side_panel center|Schematic of the OPLS right-side panel,showing the configurable transfer functino and its user-controls.>{{ :d2:d2-135:d2-135-side-panel-f-for-freq.jpg?nolink&700 |}}</imgcaption>+<imgcaption opls_side_panel center|Schematic of the OPLS right-side panel,showing the configurable transfer function and its user-controls.>{{ :d2:d2-135:d2-135-side-panel-f-for-freq.jpg?nolink&700 |}}</imgcaption>
  
 The feedback loop is defined by the Gain vs. Frequency plot shown above. ƒ<sub>I</sub>, ƒ<sub>D</sub> and ƒ<sub>HF</sub> define three corners in the transfer function. ƒ<sub>I</sub> is the frequency where the gain switches from having integral gain to having proportional gain. ƒ<sub>D</sub> is the frequency where the gain switches from proportional to differential. ƒ<sub>HF</sub> is the frequency where the gain begins to fall off at high frequency. ƒ<sub>I</sub>, ƒ<sub>D</sub>, and ƒ<sub>HF</sub> are each controlled by a rotary switch. The feedback loop is defined by the Gain vs. Frequency plot shown above. ƒ<sub>I</sub>, ƒ<sub>D</sub> and ƒ<sub>HF</sub> define three corners in the transfer function. ƒ<sub>I</sub> is the frequency where the gain switches from having integral gain to having proportional gain. ƒ<sub>D</sub> is the frequency where the gain switches from proportional to differential. ƒ<sub>HF</sub> is the frequency where the gain begins to fall off at high frequency. ƒ<sub>I</sub>, ƒ<sub>D</sub>, and ƒ<sub>HF</sub> are each controlled by a rotary switch.
Line 281: Line 281:
 **VCO Freq. Adjust** **VCO Freq. Adjust**
  
-This input is summed in with the VCO TUNE potentiometer to set the voltage to the VCO, and thus the reference frequency when the OPLS is using the internal VCO. The impedance to this input in 1 kΩ and can accept voltages from -10V to +10V and should tune over entire VCO range, provided that the VCO TUNE potentiometer is set in the middle of the VCO range. +This input is summed in with the VCO TUNE potentiometer to set the voltage to the VCO, and thus the reference frequency when the OPLS is using the internal VCO. The impedance of this input is 1 kΩ and it can accept voltages from -10V to +10V which will tune the reference frequency over the entire VCO range, provided that the VCO TUNE potentiometer is set in the middle of its range. 
  
 =====Understanding Gain in the OPLS===== =====Understanding Gain in the OPLS=====
d2/offset_phase_lock_servo.txt · Last modified: 2023/11/16 00:02 by 127.0.0.1