User Tools

Site Tools


d2:laser_servo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

d2:laser_servo [2020/03/16 22:21] – [Description] Michael Radunskyd2:laser_servo [2021/12/17 01:58] (current) – external edit 127.0.0.1
Line 67: Line 67:
 <WRAP center round box 600px> <WRAP center round box 600px>
 |                                                                                                  |  **Value**                                                                                                                          **Units**  | |                                                                                                  |  **Value**                                                                                                                          **Units**  |
-| **Input and Output Impedance**                                                                    50((~500 Ω input impedance for negative gain))                                                                                    |  Ω          |+| **Input and Output Impedance**                                                                    50((In Peak Lock mode, the 50 Ω to ground is AC-coupled.  A measurement of the DC impedance will yield a higher value.))                                                                                    |  Ω          |
 | **Output Voltage (main and aux)**                                                                |  ±10                                                                                                                                V          | | **Output Voltage (main and aux)**                                                                |  ±10                                                                                                                                V          |
 | **Input Voltage Noise**(( Referenced to 50Ω load))                                                <5                                                                                                                                |  nV/√Hz     | | **Input Voltage Noise**(( Referenced to 50Ω load))                                                <5                                                                                                                                |  nV/√Hz     |
Line 267: Line 267:
 ** Aux: Bipolar / Aux: Unipolar (2-position slider switch) ** ** Aux: Bipolar / Aux: Unipolar (2-position slider switch) **
  
-This 2-position slider switch is only accessible by removing the right side panel (see above) and sets whether the AUXILIARY OUTPUT SERVO is unipolar or bipolar. It is factory set to be bipolar so the auxiliary output can range from -12 V to +12 V.  For some applications such as driving a PZT, limiting the voltage range to positive values is necessary.  When this switch is in the unipolar mode, the auxiliary output ranges from -0.5 V to +12 V. Additionally, when in Ramp->Aux mode and Aux: Unipolar, the ramp is centered at ~3.5V instead of 0V.+This 2-position slider switch is only accessible by removing the right side panel (see above) and sets whether the AUXILIARY OUTPUT SERVO is unipolar or bipolar. It is factory set to be bipolar so the auxiliary output can range from -10 V to +10 V.  For some applications such as driving a PZT, limiting the voltage range to positive values is necessary.  When this switch is in the unipolar mode, the auxiliary output ranges from -0.5 V to +10 V. Additionally, when in Ramp->Aux mode and Aux: Unipolar, the ramp is centered at ~3.5V instead of 0V.
  
 **Ramp Master / Slave (Jumper)** **Ramp Master / Slave (Jumper)**
Line 317: Line 317:
  
 {{ :d2:d-sub_power_pinout.jpg?nolink&150 |}} {{ :d2:d-sub_power_pinout.jpg?nolink&150 |}}
 +
 +
 +While it is infrequent, the D2-005 power supply may occasionally radiate noise from the side of its chassis onto nearby electronics. This only occurs in some system configurations, and will appear as a signal at the frequency of your mains electricity (typically either 50 Hz or 60 Hz). This noise can easily be removed by moving the D2-005 at least 18 inches (45cm) away from other electronics, rotating it 90° such that the sides of the D2-005 face away, or by moving the entire power supply to a different shelf. To accommodate this, all D2-005's are shipped with a 5' DB9 cable as of January 1, 2022. 
  
 **Absolute Jump TTL (BNC)** **Absolute Jump TTL (BNC)**
  
-When asserted HIGH (5V) while in LOCK mode, ABSOLUTE JUMP takes the Laser Servo out of lock and conveys the voltage on LASER JUMP AMPLITUDE to the SERVO OUTPUT.  Thus, a 1 V input to LASER JUMP AMPLITUDE applies 1 V  to SERVO OUTPUT.  ABSOLUTE JUMP is useful when one wants to control the voltage on the integration stages of the loop filter, or for zeroing the integrators during auto-locking routines. When returned to LOW (0V), the loop filter is reengaged. Engaging or disengaging the ABSOLULTE JUMP is achieved in under 400 μs.+When asserted HIGH (5V) while in LOCK mode, ABSOLUTE JUMP takes the Laser Servo out of lock and conveys <color black/yellow>the negative</color> of the voltage on LASER JUMP AMPLITUDE to the SERVO OUTPUT.  Thus, a 1 V input to LASER JUMP AMPLITUDE applies -1 V  to SERVO OUTPUT.  ABSOLUTE JUMP is useful when one wants to control the voltage on the integration stages of the loop filter, or for zeroing the integrators during auto-locking routines. When returned to LOW (0V), the loop filter is reengaged. Engaging or disengaging the ABSOLUTE JUMP is achieved in under 400 μs.
  
-When asserted HIGH (5V) while in RAMP mode, ABSOLULTE JUMP applies a DC offset equal to the LASER JUMP AMPLITUDE to the ramp signal at SERVO OUTPUT. When asserted LOW while in RAMP mode, the ramp signal is DC balanced.+When asserted HIGH (5V) while in RAMP mode, ABSOLUTE JUMP applies a DC offset equal to -1*(LASER JUMP AMPLITUDEto the ramp signal at SERVO OUTPUT. When asserted LOW while in RAMP mode, the ramp signal is DC balanced.
  
-When disconnected, ABSOLULTE JUMP is low. +When disconnected, ABSOLUTE JUMP is low. 
  
 **Relative Jump TTL (BNC)** **Relative Jump TTL (BNC)**
  
-When asserted HIGH (5 V) while in LOCK mode, RELATIVE JUMP engages a sample-and-hold circuit and takes the Laser Servo out of lock. The voltage on the SERVO OUTPUT is the sample-and-hold value summed in with the LASER JUMP AMPLITUDE. For example, if the laser is locked and the SERVO OUTPUT is -200 mV, then engaging the RELATIVE JUMP and putting 300 mV on the LASER JUMP AMPLITUDE will make the SERVO OUTPUT 100 mV (-200 mV + 300 mV).  This feature is useful for jumping the laser relative to its current lock point (say +200 MHz from a locked transition). When returned to LOW (0 V), the loop filter is reengaged, enabling the laser to be relocked to its original position (by setting LASER JUMP AMP to zero before returning the trigger to TTL low), or to a new lock point (by asserting the trigger low with the LASER JUMP AMP still at a non-zero value). (See [[http://www.vescent.com/jumping-lock-point-d2-125-reconfigurable-servo/|application note here]].) Engaging or disengaging the RELATIVE JUMP is achieved in under 400 μs.+When asserted HIGH (5 V) while in LOCK mode, RELATIVE JUMP engages a sample-and-hold circuit and takes the Laser Servo out of lock. The voltage on the SERVO OUTPUT is the sample-and-hold value summed in with <color black/yellow>the negative</color> of the LASER JUMP AMPLITUDE. For example, if the laser is locked and the SERVO OUTPUT is -200 mV, then putting <color black/yellow>+</color>300 mV on the LASER JUMP AMPLITUDE and engaging the RELATIVE JUMP will set the SERVO OUTPUT to -200 mV + (<color black/yellow>-</color>300 mV) = -500 mV.  This feature is useful for jumping the laser relative to its current lock point (say +200 MHz from a locked transition). When returned to LOW (0 V), the loop filter is reengaged, enabling the laser to be relocked to a new lock point (by asserting the trigger low with the LASER JUMP AMP still at a non-zero value). (See [[http://www.vescent.com/jumping-lock-point-d2-125-reconfigurable-servo/|application note here]].)  Or the laser can be relocked to its original position (by setting LASER JUMP AMP to zero before returning the trigger to TTL low). Engaging or disengaging the RELATIVE JUMP is achieved in under 400 μs.
  
 When asserted HIGH (5V) while in RAMP mode, RELATIVE JUMP applies a DC offset equal to the LASER JUMP AMPLITUDE to the ramp signal at SERVO OUTPUT. When asserted LOW (0V) while in RAMP mode, the ramp signal is DC balanced. When asserted HIGH (5V) while in RAMP mode, RELATIVE JUMP applies a DC offset equal to the LASER JUMP AMPLITUDE to the ramp signal at SERVO OUTPUT. When asserted LOW (0V) while in RAMP mode, the ramp signal is DC balanced.
d2/laser_servo.1584397287.txt.gz · Last modified: 2021/08/26 14:26 (external edit)