User Tools

Site Tools


d2:laser_controller

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
d2:laser_controller [2020/10/29 21:53] Michael Radunskyd2:laser_controller [2021/02/26 22:52] Michael Radunsky
Line 16: Line 16:
 ==== Description: ==== ==== Description: ====
  
-The laser controller has two temperature controllers capable of sub-mK stability(( Sub-mK stability requires a proper thermal design and proper tuning of the temperature controller to the thermal plant. If you did not purchase a D2-100 Diode Laser with your Laser Controller, please read the section on tuning the temperature controller.)) and a 200 mA or 500 mA precision current source based on the Libbrecht-Hall(( Libbrecht and Hall, A Low-Noise, High-Speed Current Controller, Rev. Sci. Inst. 64, pp. 2133-2135 (1993).)) circuit.  The laser controller is designed for very fast current modulation via the servo input enabling high-speed servo control of the laser's frequency.  The current servo input can accommodate input frequencies over 10 MHz and is limited by  the 1 kΩ input impedance. Additionally, an RF port is available for higher frequency modulation.+The laser controller has two temperature controllers capable of sub-mK stability((Sub-mK stability requires a proper thermal design and proper tuning of the temperature controller to the thermal plant. If you did not purchase a D2-100 Diode Laser with your Laser Controller, please read the section on tuning the temperature controller.)) and a 200 mA or 500 mA precision current source based on the Libbrecht-Hall(( Libbrecht and Hall, A Low-Noise, High-Speed Current Controller, Rev. Sci. Inst. 64, pp. 2133-2135 (1993).)) circuit.  The laser controller is designed for very fast current modulation via the servo input enabling high-speed servo control of the laser's frequency.  The current servo input can accommodate input frequencies over 10 MHz and is limited by  the 1 kΩ input impedance. Additionally, an RF port is available for higher frequency modulation.
  
 <WRAP center round important 60%>The range of pole settings for the T2 temperature control loop (diode temperature control) for D2-105 Laser Controllers with Serial Number 2675 and higher (Temperature Control Board Serial Number 6987 and higher) have been modified to allow the user to more easily control a low thermal mass laser assembly such as a Photodigm TOSA.  Please use the appropriate instructions in the "Tuning the Temperature Controller" section of this manual for your Laser Controller and laser type. <WRAP center round important 60%>The range of pole settings for the T2 temperature control loop (diode temperature control) for D2-105 Laser Controllers with Serial Number 2675 and higher (Temperature Control Board Serial Number 6987 and higher) have been modified to allow the user to more easily control a low thermal mass laser assembly such as a Photodigm TOSA.  Please use the appropriate instructions in the "Tuning the Temperature Controller" section of this manual for your Laser Controller and laser type.
Line 155: Line 155:
 When the switch is in the Off/Reset position, the laser diode is turned off and the laser is shorted to ground. When flipped into the On position, the Laser ON (LED indicator) will turn on and 5s later, the laser will turn on. If the laser diode is turned off from the laser enable or remote interlock, this switch must to placed into the Off/Reset position and then into the ON position to turn the laser back on. When the switch is in the Off/Reset position, the laser diode is turned off and the laser is shorted to ground. When flipped into the On position, the Laser ON (LED indicator) will turn on and 5s later, the laser will turn on. If the laser diode is turned off from the laser enable or remote interlock, this switch must to placed into the Off/Reset position and then into the ON position to turn the laser back on.
  
-Neither the laser nor the Laser ON (LED indicator) will not turn on if any of the following conditions are true:+Neither the laser nor the Laser ON (LED indicator) will turn on if any of the following conditions are true:
   - The remote interlock is not engaged   - The remote interlock is not engaged
   - The key interlock is not engaged   - The key interlock is not engaged
Line 292: Line 292:
  
 <WRAP center round important 60%>The range of pole settings for the T2 temperature control loop (diode temperature control) for D2-105 Laser Controllers with Serial Number 2675 and higher (Temperature Control Board Serial Number 6987 and higher) have been modified to allow the user to more easily control a low thermal mass laser assembly such as a Photodigm TOSA.  Please use the appropriate instructions below for your Laser Controller. <WRAP center round important 60%>The range of pole settings for the T2 temperature control loop (diode temperature control) for D2-105 Laser Controllers with Serial Number 2675 and higher (Temperature Control Board Serial Number 6987 and higher) have been modified to allow the user to more easily control a low thermal mass laser assembly such as a Photodigm TOSA.  Please use the appropriate instructions below for your Laser Controller.
 +
 +If you purchased the -FL option for your D2-105, then the T1 loop has the same available pole settings as the T2 loop of controllers with Serial Number 2675 and higher.
 </WRAP> </WRAP>
  
d2/laser_controller.txt · Last modified: 2024/03/27 15:33 by Thomas Bersano